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Abstract-Analytical solutions are presented for the transient heat transfer in forced convection flow over 
a curved wall when the Prandtl number is zero. The wall is subjected to either a variation in temperature or a 
variation in the heat flux. As an application, the solutions are computed for the case of wedge flows. The 
present analysis also should be applicable to a laminar boundary layer flow with a variable free stream 

velocity when the Prandtl number is slightly different from zero. 
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NOMENCLATURE 

error function 

defined in equation (27) ; 
dimensionless function re- 
lated to the wall tempera- 
ture, see equation (8); 
thermal conductivity ; 
characteristic length ; 
exponent, in connection with 
the potential velocity com- 
ponent in wedge flows ; 
function defined in equation 
(41); 

P&let, number ; 

constant heat flux along the 
wall ; 

Reynolds number ; 

t This work was supported in part under Contract 
Number Nonr-222(95). 
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fluid temperature change 
over the temperature far 
from the wall ; 
constant temperature along 
the wall ; 
dimensionless time ; 
reference velocity ; 
dimensionless fluid velocity 
components ; 
dimensionless fluid potential 
velocity components ; 

dimensionless distance along 
streamline ; 

dimensionless distance along 
the wall ; 

YI(t, x, r), Y2(t, x, q), functions defined in 
equation (19) ; 

Y? dimensionless distance per- 
pendicular to the wall ; 

4 variable, defined in equation 

(47) ; 
BAn, 4, incomplete Beta function, 

defmed in equation (5 1) ; 
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Y(X), 

r = x/P) Y, 

8, 

li, 
V, 
(T = V/K, 
z = tu,(x)/x, 

z, = tlulx,, 

Gamma function 

= 1 exp.(-[)x gx-’ di; 
dimensionless function re- 
lated to wall heat flux, see 
equation (9) ; 
thickness of the hydro- 
dynamic boundary layer ; 
dimensionless distance nor- 
mal to the wall ; 
Fourier sine or cosine trans- 
form of T(t, X, $) with res- 
pect to the $ variable ; 
thermal diffusivity ; 
kinematic viscosity ; 
Prandtl number ; 
dimensionless time variable ; 
dimensionless time variable 
in [3] and [4] ; 
function defined in equation 

(26) ; 
x7 arbitrary function ; 

WY 0, stream function. 

Subscripts 
1, 
4. 

dimensional quantities ; 
the case of a prescribed wall 
heat flux ; 

ss, steady-state conditions ; 

W conditions at the wall. 

Superscript 
i, differentiation. 

INTRODUCTION 

THE PROBLP~ of the heat transfer to fluids of 
very small Prandtl numbers (for example, liquid 
metals) is of considerable practical importance 
in nuclear-power plants and in power generation 
systems for space applications. The problem has 
been analyzed frequently in the literature. 

In steady-state heat transfer, Morgan et al. [l] 
presented a theoretical study for incompressible 
laminar boucdary layer flows around bodies of 
arbitrary shape when the Prandtl number D is 
very small. The analysis was based on the 

observation that for small 0 the hydrodynamic 
boundary layer is thin compared to the thermal 
boundary layer so that the velocity distribution 
is essentially potential over the major portion 
of the thermal layer. A solution was obtained 
for the first two terms of a series representation 
for the temperature in powers of & for variable 
wall temperature. Napolitano [2] treated the 
same problem, but for the special case of a flat 
plate at constant wall temperature. His final 
result, for the wall heat flux, was also in the form 
of a series in powers of 03. The first three terms 
were determined and the first two terms were 
identical to those of Morgan [l]. Napolitano 
concluded that the accuracy of his solution is 
satisfactory even for a Prandtl number as high 
as 0.6. 

The problem of transient heat transfer when 
the Prandtl number is small was treated by Cess 
[3] for the case of an incompressible laminar 
boundary layer flow over a flat plate with a step 
in the wall temperature. Cess used the observa- 
tion of Reference [l] and approximated the 
velocity field throughout the thermal layer by 
its value at the edge of the hydrodynamic 
boundary layer. He obtained a solution for the 
wall heat flux for small and large times and 
these were joined at T, = t lU/x, = 1. The 
solution for small times was in the form of a 
series in powers of 73. In treating the same 
problem, Riley [4] pointed out that, for very 
small times, the thermal layer is totally em- 
bedded in the velocity boundary layer. He used 
the series expansion of the Blasius velocity 
function near the wall and found the solution in 
the form of a series in powers of T!. For large 
times, Riley showed that the steady state is 
approached in an exponential manner. No 
matching of the two solutions was attempted. 

The present paper treats the problem of 
transient heat transfer to laminar boundary 
layer flows when the Prandtl number IS zero. 
This means that the velocity boundary layer 
vanishes and the velocity distribution can be 
approximated by the potential flow solution 
throughout the thermal layer. Analytical solu- 
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tions are obmined for arbitrary potential flows 
when the wall is subjected to a variation in 
temperature or beat &t-x. 

The starting point in the analysis is the 
transient form of the energy equation for plane 
ineo~~re~~bi~ Iaminar bolzndary layer fiow. 

mnductiorr in the xl d&xtion as weI1 as thrr 
viscous dissipation in the fluid have been 
neglected and the fluid properties are taken to 
be constant. The velocity field is assumed to be 
~~de~ndent of time. 

xt is WeU known that the veIocity boundsr~ 
layer thickness is &x JR Hence, when v -+ 0, 
cr = V/K --+ 0 and 6 + 0 and hence the flow is 
potential throughout the thermal layer. Con- 
sequently, the velocity components zlI and o2 
reduce to the potent&d &xv ~~~~onen~ at,, 
and EJ~~= If the E&et nap Pe = W&C $ 1, 
the thickness of the thermal layer is very small 
compared to the characteristic geometric dimen- 
sion of the problem L [SJ, and hence the 
poter&al velocity components vary only shg!tt& 
across the thickness of the thermal layer_ If the 
opponents %P1 and vPI are expanded in pour 
series in the variable y1 about y, = 0 [see also 
[l]), and only the first term in these series is 

retained, the velocity components 
take on the form 

r&W+) = ~,If%YI) = -Y*~&x). (3) 

Note that the velocity component uPI is such 
that uPI and oPl satisfy the continuity equation 
for ~n~o~~r~ss~b~e flow= ~~at~on (1) can now 
be written in a nond~m~~s~on~ form using 
equations (2) and (3) with the result that 

Xl Y, ‘I” T=,-_ -,y = --,u 5% -, 
?j 

L L p u “r, 

where the f~~~t~ons~~) md y(x) are prescribed 
functions of x which are specified later in the 
analysis. The boundary conditions expressed in 
equations (8) and (9) describe either a variatiun 
in the wa@ tem~ratu~ [equation @jl or 8 
variation in the w& heat flux [equation @)j, 
Note that 11, and qa represent constant dimen- 
sional temperature and heat flux along the wall, 
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According to conditions in equations (6) and 
(7), the fluid temperature is initially uniform 
throughout the space and retain this value for 
t > 0, at the leading edge of the surface and far 
from the wall. 

The system of equations (4)-(g) can be 
simplified by applying the von Mises trans- 
formation. The stream function I/ is defined as 

$ = u,(x) 5 = JVV f&f y. 
With this, equations (4H9) change to 

dT 
-$- + Ups = aT [u,W12 $2 

t>O,x>O,$>O 

T(O,x,$) =0,x > o,lj > 0; 

T(t, 0, II/) = 0, t > 0, $ > 0 

T(t, x, CEI) = 0, t > 0, x > 0 

and 

or 

T&x,0) =AX),f > 0,x > 0 

-~(t,x,o)=‘(xl,t>o,x>O. 
@4 

(10) 

(11) 

(12) 

(13) 

(14) 

(IS) 

These equations are solved by applying a 
Fourier transformation with respect to the 
variable I/L This results in first order partial 
differenti~ equations, with t and x as inde- 
pendent variables, which are solved by the 
method of characteristics. This method of 
solution can be also used in casef; y, and up are 
functions of both x and t. The equations, how- 
ever, become more involved and are not con- 
sidered in the present paper. The case of a 
variation in wall temperature will be treated 
first. 

Solution for the heatflux tichen the 1~11 tempera- 
ture is prescribed 

The problem in this case is described by 
equations (11)-(14). The solution is obtained by 
first applying a Fourier sine transform to 

and PAUL L. CHAMBRI? 

equation (11) with respect to 
The Fourier sine transform 
T(t, x, +) is defined as [6]. 

ai 

the variable @. 
of a function 

W, x, 4 = J(2/74 jd 7% x, til sin fw$) dlj/. 

‘(16) 
Using equation (16) and the boundary condi- 
tions (13) and (14), equation (11) tr~sforms into 
the first order partial differential equation 

a6 
7& + u,(x) g = u;(x) [42/n) of(x) - o%]. 

(17) 

Equation (17) can be solved by the method of 
characteristics subject to the side conditions in 
equation (12), which when transformed read, 

@(O, x, 0.)) = 0. sit, 0, Co) = 0. (1st 

As described in [7], the general solution of 
equation (17) is of the form 

r, = XK) (19) 

where YI(t, x, 8) = C1 and Y,(t, x, 0) = C, are 
solutions of any two independent differential 
equations that imply the relationship 

dx 
&--v= 

d0 

u,(x) 11;(x) [&7&&x) - w28]’ 

t20) 

In general, the solutions Yi and Y2 represent 
two families of integral surfaces, YI(t, x, 6) = C, 
and Y2(t, x, 8) = C, in the coordinate system 
t, x, 0. The intersection of a surface of one 

family with a. surface of the second family 
defines a characteristic curve. Y[ and & are 
determined by integrating the following two 
equations : 

dt 25 
@p(X) 

U,(X) dx = 
d@ 

[&27r)n)jx) - w%] (22) 
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The solution to equation (21) is 

Yr(t, x, l9) = t - X(x) = c, 

where 

(23) 

x dq X(x) = - 
s up(r) 

x 2 0. (24) 

0 

The potential velocity distribution should be of 
such character that the integral in equation (24) 
exists. After integrating both sides of equation 
(22), and rearranging the terms, the following is 
obtained : 

Yz(t, x 7 0) - J(2/rr) Ax) exp [W’+(X)] 
Co 

- 8exp. [02+(x)] 

t/(W) x 
- 0 f’(s) exp [~2~v)l drl = G s (25) 

0 

where 

(26) 

In this case, the integral surface Yr = Cr is a 
family of planes that are parallel to the x-t 
plane. The equation Y2 = C2 defines a family of 
surfaces since ~9 is a function of x and t. Any 
plane of the first family intersects a surface of 
the second family in a characteristic curve that 
lies in a plane parallel to the x-t plane where 
our interest is confined to the first quadrant 
x > 0, t > 0. These characteristic curves are 
readily defined by equation (23) and are shown 
in Fig. 2. The equation of the dividing charac- 
teristic, which passes through the origin in the 
x-t plane, is defined as 

t = X(x) or x = F(t) (27) 

on the condition that equation (23) can be 
inverted and there is a l-l correspondence 
between the variables t and x. Except for an 
arbitrary constant, the equation of the other 
characteristic curves shown in Fig. 2 is the same 

as equation (27) and it may be written either as 
in equation (233 or as 

x - F(t) = c,. (28) 

t 

0 x 

FIG. 2. Characteristic curves in the x-t plane (x > 0. t > 0). 

Hence, in view of equations (19) (25) and (28) 
the general solution of the partial differential 
equation (17) is 

Ax) JW) w, x, 4 = 42/n) w - --&- 

x exi? [ -~24b)l 6fW exp b2M)1 dq 

- x[x - F(t)]exp. [-o’&(x)]. (29) 

The arbitrary function x is determined such that 
the initial conditions for 8 as stipulated in 
equation (18) are satisfied. This results in two 
different expressions for x and hence for 8 
depending on whether t < X(x) or t > X(x) 

fl(t, x, co) = +j(x) - +$jjc - k’(t)] 

x exp[-W21W - 44~ - W)}] 

x J(W) 
0 s f’(rl) exp[ -~2{4(x) 

x-F(t) 

- 9(v))ldv, t G X(x) (30) 
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J@M x 
x expE-~2#W - o s flq) 

0 

x exp[-oZ{(p(x) - 4(q)}]dtp t 2 XW. 
(31) 

Note that the wall tem~rature~~) can have a 
finite stepA0) at x = 0. In equation (30), x - 
F(r) > 0 (see Fig. 2) until t = X(x), that is, 

x = F(t) whenf[x - F(t)] =f(O). Furthermore 
the function 4(x) is defined in equation (26) for 
x 2 0 and hence 4[x - F(t)] in equation (30) is 
well defined for x - F(t) > 0. Equation (30) 
satisfies the condition e(O, x, o) = 0 and corres- 
ponds to the transient part of the solution. 
Similarly, equation (31) satisfies the condition 
0(t, 0, co) = 0 and represents the steady-state 
part of the solution. 

The next step is to invert equations (30) and 
(31) back to the (t, x, $) domain. This is done by 
using the relationships [6] 

a’ 

sin (o$) 
-...-- do = ;, + > 0 (32) 

0 
0 

m 

s exp( - w2a) 

0 
sin (all/) dw 

0 

= erf(~j2~~), a Z 0, $I > 0 (33) 

where a is a parameter, and the assumption is 
made that the integrations in equation (33) can 
be interchanged with the integrals appearing in 
equations (30) and (31). Using the above re- 
lationships and equation (IO), the final result of 
the fluid temperature distribution in the dimen- 
sionless (t, x, y) domain is obtained as 

W, x, Y) = Ax) -f[x - WI] 

x erf fJ(Pe) t&c) y/2 C#f$ - #E - lWJ)+] 

- 4(v)lt} dq, t d X(x, (34) 

w, x, Y) = Ax) - AO, 

x erf (J(W u&-4 Y/Z [WI *t 

- ifh) erf {JGW u&I y/2 E#W 

- 4(r)l+} dq, t 2 X(x). (35) 

These expressions can be verified and shown to 
satisfy the partial differential equation and the 
associated side conditions. 

Our primary interest centers on the dimen- 
sionless temperature gradient at the wall. This 
is obtained by differentiating equations (34) 
and (35) with respect to y and then letting y tend 
to zero. 

Jg (t, x, 0) = 
J’(Pe) up(x)_@ - F(t)] 

Jc4 [qw - d+ - m)ll’ 

’ + J(pe) up(x) f ‘Wf dv ~-- 
Jfd s ---l--‘-i’ L&x) - #(?fl-x 

x-F(t) 

t < X(x) (36) 

- g(t, x, 0) = 
JW) u,W70) + JWW u&4 
JCd r&x)P J Tf‘ 

It is important here to note that in case_/(x) has 
a step jump at x = 0 and remains constant 
thereafter the integrals in equations (36) and 
(37) vanish. The integrals in equations, (36) and 
(37) exist as n tends to x providedf(q) and 4(q) 
are such that 

f Id -----i 
[#4x) - #lrffl’ 

= o&q, n < 1 

in the neighborhood of the singular point of the 
integrand. 

Equations (36) and (37) reveal that for time 
t < X(x), the temperature gradient at the wall 
is a function of both time and location along 
the wall and for t 3 X(x), the tem~rature 
gradient at the wall reaches steady-state condi- 
tions and hence is independent of time. 
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Solution for the wall temperature when the heat 
flux is prescribed 

The problem in this case is described in 
equations (II), (12), (13) and (15). The anafysis 
follows closely that presented in the previous 
section. The only major difference is the use of 
the Fourier cosine transform, which is defined 
as 163 

(38) 

instead of the Fourier sine transform, which was 
previously employed. The rest of the details are 
omitted and the final results for the dimension- 
less temperature distribution are 

where 

By substituting y = 0, the wall temperature can 
be easily obtained from equations (39) and (40). 
The integrals in the above equations converge 
as 17 tends to x provided &) and Qfp~) are such 
that 

YW - = o(q-“), n < 1 rw - cb(r)l f 
in the nei~borh~d of the singular point of the 
integrand. 

APPLICATIONS 

To demonstrate the applications of the 
present analysis, the problem of wedge flows 
will be considered. In this case, the dimension- 
less potential velocity is [S] 

where x is a dimensionless distance measured 
along the surface of the wedge from its vertex. 
The functions X(x) and F(t), defined in equa- 
tions (24) and (27) are 

X(x) = .+“/(l - m), x & 0 and F(t) 

= [t(l - m)] i/(1 -rn), t 2 0 (43) 

while 

i&x) = xm+l /@?l f l), x > 0. 

Note that the case of m = 1 (stagnation-point 
flow) has been excluded since the integral in 
equation (24) diverges at the lower limit. For 
simplicity, the prescribed wall temperature or 
heat flux are assumed to be uniform spatially, 
hence 

AAX) = y(x) = 1, x > 0. 

Srep jump in wafl temper~ure 
The ratio of the time-dependent heat flux at 

the wall to its steady-state value (ql, ,,,/ql ~ W, ,,) is 
obtained from equations (36), (37) and (42)-Q&4). 

4~~/4~,~,~ = Lr & l/(1 - m) (46) 

where 

01 = (1 - [r(f - m))‘if’-m’f. (47) 

In this case, r = tu&c)/x = tx”- ’ and the 
steady-state wall heat flux is given by equation 
(48) 

To compute ~~~~~~~ L should be taken as a 
typical length in the x-direction; the reference 
velocity U, appearing in Pe, should be con- 
sidered as the velocity at x1 = L. 
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The case of a flow over a flat plate corres- When a = 1, the integral in equation (51) 
ponds to m = 0 and equations (45) and (46) defines the complete Beta function, which is 
reduce to related to the Gamma function by the following 

(49) 
relationship [8] 

41,w/41,,,, = 12 z > 1. 
(50) B(&,f)=J(“)++(~) 

These results are shown in Fig. 3 for different 
values of m. (52) 

0 I.0 2.0 3.0 4.0 

T _ +y tp- I 

FIG. 3. Transient wall heat flux response to a step jump in wall temperature for wedge flows. 
equations (45) and (46). 

Step jump in wall heatflux The incomplete Beta function is tabulated in [8]. 
The ratio of the time-dependent wall tempera- Using the above relationships, the ratio of the 

ture to its steady-state value is calculated from wall temperature to its steady-state value can 
equations (39)-(41) (y = O), (91, (42)H44). The be written in the following form 
integrals appearing in equations (39) and (40) 
can be written, in this case, in terms of the / 4 I\ 
incomplete Beta function B, (l/[m + 11, 4) TI,q, ,,,/T,,, w,ss = 1 - B 
which is defined as [8] 
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The steady-state wall tem~rat~e in this case is 

T 9oL 
l~q*w~ss = K[(m + l)Pe]+ 

1 
r----- ( > 1-M 

m+l xi 

0 

-r 

X 
m+3 z - 

( > 

(55) 
r--- 

2m+ 2 

T r, *, W, ss is computed in the same way as ql, w, ss, 
given in equation (48). When m = 0 (flat plate) 

Ti,~,,&,p,,,, = &Xr G 1 (561 

&,q,w/&,q,w,ss = 1,~ 2 1. (57) 

The above results are shown in Fig. 4 for 
different values of m. Since the arguments of B, 

prescribed constant are shown in Figs. 3 and 4. 
The values m = 0, a, +, and 2 correspond to the 
wedge angles 0, 2n/5, 2rrj3, and 6x17, respec- 
tively [S, p. 1431. 

These solutions are composed of a transient 
part that reaches the steady state in an abrupt 
manner. This abrupt behavior is a result of the 
assumption that CT = 0 and that the potential 
velocity prevails ~roughout the thermal layer. 

The present analysis, though developed for 
the theoretical case of 0 = 0 (which implies the 
absence of a hydrodynamic boundary layer), 
may still give good results for laminar boundary 
layers when c is slightly different from zero. 
(Note that in this case the P&let number should 
be written as Pe = Re . CT). This is suggested by 
the results of [l] and [4]. The steady-state part 
of the present solution for a prescribed wall 
temperature, that is, equation (37), is identical 

0.75 

: 
r 
d 
-- : 0.5 

d 

t-G 
O-25 

fu, (xl 
T *7=tx m-l 

FIG. 4. Transient wall temperature response to a step jump in wall heat flux for wedge flows, 
equations (53) and (54). 

for m = &, $ and $ are not tabulated in [S], B, to the first term in the series expansion of the 
in equation (52) was evaluated on an IBM 360 wall heat flux in [ 1). This term was shown [l] 
computer. to predict the heat transfer from the wall quite 

well up to c = 0.03. During the transient phase, 
DISCUSSION the small time solution by Riley [4], for the flat 

The solutions for both the heat flux when the plate case revealed that the heat transfer process 
wall temperature is prescribed constant, and is dominated primarily by the one-dimensional 
the wall temperature when the heat flux is molecular diffusion transverse to the flow field. 
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This is also the case in the present solution, 
equations (49) and (56). The large time solution 
[4] consisted of a steady-state part and a 
transient contribution in the form of a series 
whose leading term was determined. This term 
shows that the steady state is reached exponenti- 
ally and not abruptly at r = 1 as indicated in 
equations (50) and (57). However, for small 
Prandtl numbers and for values of z z 1, this 
term becomes small when compared to the 
steady-state part of the solution and therefore 
the abrupt behavior shown in the present 
analysis should be a good approximation. 

This indicates, at least for the special case of a 
flat plate, that during transient and steady-state 
phases, the present analysis should predict the 
heat transfer or surface temperature quite well 
if the Prandtl number is sufficiently small. The 
present analysis is of particular value in case of 

and PAUL L. CHAMBRE 

geometries other than a flat plate where no 
analytical solutions are available in the litera- 
ture. 
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R&mrn~Des solutions analytiques sont present& pour le transport de chaleur transitoire dans un 
tcoulement avec convection for&e sur une paroi courbe lorsque le nombre de Prandtl est nul. La paroi 
est soumise soit a une variation de temperature soit a une variation de flux de chaleur. Comme application, 
on a calcult les solutions pour le cas des ecoulements sur des dibdres. L’analyse actuelle serait egalement 
applicable a un Ccoulement laminaire de couche limite avec une vitesse variable de l’ecoulement libre 

lorsque le nombre de Prandtl est legerement different de zero. 

Zusanunenfassnng-Ftir den Warmetibergang in einer Zwangskonvektionstriung an einer gekriimmten 
Wand werden analytische Liisungen agegeben, fiir eine Prandtl-Zahl gleich Null. Fur die Wand ist dabei 
eine Variation der Temperatur oder de Warmestromdichte vorgegeben. Als Anwendungsbeispiele wurden 
die Losungen fiir Keilstrijmungen berechnet. Die vorliegende Methode dtirfte such auf laminare Grenz- 
schichtstromungen mit variabler Freistromgeschwindigkeit anwendbar sein, wear die Prandtl-Zahl nur 

wenig grosser als Null ist. 

AHHOTBqHa-npeAcTaB~eHbI ZlHaJIHTIfYeCKI'le peIIIeHI!Ji HeCTa~HOHapHO~O IIepeHOCa TeHJIH 
IIpIiBbIH~H(~eHIIOfI lfOHBeKI(liIiH3 IICKpIiHJIeHHOti CTeHKe, KOrRa KpHTep&iti HpaHfiTJIH PaBeH 
Irgnm. I/iaMeHmacb mm reuneparypa creuuu ~JIEI rennouoti IIOTOK. n KaqecTBe npnixepa 
RaIrpaCsBTpeUIeHIItt AnH CJIJ"4aR 06TeKaHHH KJIIIH3.&XHHbItiaHaJII43 MOXEeT 6hITb HpliMeHeH 
IF TeqeHIm JKIMHHapHOrO norpaunruoro CJIOH c rrepeMentfo# CKOPOCTbIO CBo6i)aHoro nOTOKa, 

tiOrs3 3HaqeHIIH KPlITePIlFI HpaHfiTJIR HeCKOJIbKO OTJIIUIHbI OT HYJIH. 


