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Abstract—Analytical solutions are presented for the transient heat transfer in forced convection flow over
a curved wall when the Prandtl number is zero. The wall is subjected to either a variation in temperature or a
variation in the heat flux. As an application, the solutions are computed for the case of wedge flows. The
present analysis also should be applicable to a laminar boundary layer flow with a variable free stream
velocity when the Prandtl number is slightly different from zero.

erf(x),

F(t),

Ax),

K,

L,

m,

N(x,y;n),

Pe = l—]—l—‘,
K

‘10’

Re = EE,
v

NOMENCLATURE
error function

= —\%jexp. (—6%de;

0
defined in equation (27);
dimensionless function re-
lated to the wall tempera-
ture, see equation (8);
thermal conductivity ;
characteristic length ;
exponent, in connection with
the potential velocity com-
ponent in wedge flows ;
function defined in equation
(41);

Péclet number;

constant heat flux along the
wall;

Reynolds number ;
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T(t, x, ),

L.,

t,

U,

u(x, y), (x, y),
uy(x, y), v,(x, y),

X

fluid temperature change
over the temperature far
from the wall;

constant temperature along
the wall;

dimensionless time;
reference velocity ;
dimensionless fluid velocity
components;

dimensionless fluid potential
velocity components;;

X(x) = jj— dimensionless distance along
u,n) streamline;
0

X, dimensionless distance along
the wall;

Yi(t, x,n), Ya(t, x,n), functions defined in
equation (19);

) dimensionless distance per-
pendicular to the wall;

o, variable, defined in equation
@7);

B (n, m), incomplete Beta function,

defined in equation (51);
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I'(x), Gamma function
= | exp.(={)x 1 d{;
wx), dimensionless function re-

lated to wall heat flux, see
equation (9);
o, thickness of the hydro-
dynamic boundary layer;
dimensionless distance nor-
mal to the wall;
0, Fourier sine or cosine trans-
form of T(t, x, ) with res-
pect to the i variable

K. thermal diffusivity;
v, kinematic viscosity ;
g = VK, Prandtl number;

T = tu,(x)/x, dimensionless time variable ;
1, = t;U/xyq, dimensionless time variable
in [3] and [4];
o, function defined in equation
(26);
% arbitrary function;
Y(x, ), stream function.
Subscripts
1, dimensional quantities ;
q. the case of a prescribed wall
heat flux;
sS, steady-state conditions;
W, conditions at the wall.
Superscript
1, differentiation.
INTRODUCTION

THE PROBLEM of the heat transfer to fluids of
very small Prandt] numbers (for example, liquid
metals) is of considerable practical importance
in nuclear-power plants and in power generation
systems for space applications. The problem has
been analyzed frequently in the literature.

In steady-state heat transfer, Morgan et al. [1]
presented a theoretical study for incompressible
laminar boundary layer flows around bodies of
arbitrary shape when the Prandtl number o is
very small. The analysis was based on the
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observation that for small ¢ the hydrodynamic
boundary layer is thin compared to the thermal
boundary layer so that the velocity distribution
is essentially potential over the major portion
of the thermal layer. A solution was obtained
for the first two terms of a series representation
for the temperature in powers of ¢* for variable
wall temperature. Napolitano [2] treated the
same problem, but for the special case of a flat
plate at constant wall temperature. His final
result, for the wall heat flux, was also in the form
of a series in powers of ¢*. The first three terms
were determined and the first two terms were
identical to those of Morgan [1]. Napolitano
concluded that the accuracy of his solution is
satisfactory even for a Prandtl number as high
as 0-6.

The problem of transient heat transfer when
the Prandtl number is small was treated by Cess
[3] for the case of an incompressible laminar
boundary layer flow over a flat plate with a step
in the wall temperature. Cess used the observa-
tion of Reference [1] and approximated the
velocity field throughout the thermal layer by
its value at the edge of the hydrodynamic
boundary layer. He obtained a solution for the
wall heat flux for small and large times and
these were joined at 7, =1t,U/x; =1 The
solution for small times was in the form of a
series in powers of t2. In treating the same
problem, Riley [4] pointed out that, for very
small times, the thermal layer is totally em-
bedded in the velocity boundary layer. He used
the series expansion of the Blasius velocity
function near the wall and found the solution in
the form of a series in powers of tf. For large
times, Riley showed that the steady state is
approached in an exponential manner. No
matching of the two solutions was attempted.

The present paper treats the problem of
transient heat transfer to laminar boundary
layer flows when the Prandtl number s vero.
This means that the velocity boundary layer
vanishes and the velocity distribution can be
approximated by the potential flow solution
throughout the thermal layer. Analytical solu-
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tions are obtained for arbitrary potential flows
when the wall is subjected to a variation in
temperature or heat flux.

ANAT VQIQ
ALNAE A IANG

The starting point in the analysis is the
transient form of the energy equation for plane
incompressible laminar boundary layer flow.

T, T, ) Ty 3T,
— + 15X, — 21Xy, —_— =K o
1 ;.}’x)axl 1%y Yx)ayl oy

at,
(1)

where x; and y, are the coordinates along and
perpendicular to the possibly curved wall, res-
pectively, see Fig. 1. In the energy equation, the

F1i, 1 The coordinate ystem.

conduction in the x,; direction as well as the
viscous dissipation in the fluid have been
neglected and the fluid properties are taken to
be constant. The velocity figld is assumed to be
mndependent of time.

It is well known that the velocity boundary
layer thickness is dxx./v. Hence, when v 0,
o =v/k—+0 and 6 - 0 and hence the flow is
potential throughout the thermal layer. Con.
sequently, the velocity components u, and 1,
reduce to the potential flow components u,,
and v,,. If the Péclet number Pe = UL/x » 1,
the thickness of the thermal layer is very small
compared to the characteristic geometric dimen-
sion of the problem L [5], and hence the
potential velocity components vary only slightly
across the thickness of the thermal layer. If the
components #,; and v,; are expanded in power
series in the variable y, about y, = 0 (see also
[1]), and only the first term in these series is
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retained, the velocity components u; and v,
take on the form
2

P 3
(&)

w4y, yi) = (X))
01(%y, ¥1) = 0,0 (%5, Y1) = =Pty
Note that the velocity component v, is such
that u,; and v, satisfy the continuity equation
for incompressible flow. Equation {1} can now

be written in a nondimensional form using
equations (2) and (3) with the result that

8T+u (x)ﬁT 3 {ur(x)ﬂ:wazT
a P ax e T e
t>0x>8{>0 &3]
where
WU e e T
t=—HX=py=Tlp= ,T-Tw
and
{=JPey. 5
The side conditions are
T{§§x§’§}mQx>§sg>0;?w{gs§a§=03
t>8I>0 &
T x, 00} =0t>0,x>0 (M
and
T xW=Axt>0x>0 %)
or
éTq
- Y(t: Xy 0) = ?(x):
t=0x>0 ’};mw ©)
. gol

where the functions fix} and y(x} are prescribed
functions of x which are specified later in the
analysis. The boundary conditions expressed in
equations (8) and {9) describe either a variation
in the wall temperature [equation (8)] or a
variation in the wall heat flux [equation (91}
Note that T, and ¢, represent constant dimen-
sional temperature and heat flux along the wall,
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According to conditions in equations (6) and
(7), the fluid temperature is initially uniform
throughout the space and retain this value for
t > 0, at the leading edge of the surface and far
from the wall.

The system of equations (4)49) can be
simplified by applying the von Mises trans-
formation. The stream function y is defined as

¥ = ux){ = J(Pe)u,x)y. (10)
With this, equations (4)+9) change to
o+ w0 IF = Lo %
t>0,x>04¢ >0 (11
T(0,x,4) = 0,x > 0, > 0;
T(t,0,4)=0,t >0,y >0 (12)
T, x,0)=0,t>0,x>0 (13)
and
T{t,x,0) = fix),t > 0,x >0 {14)
or
—%(t,x,0)=3—§%z>0,x>0. (15)

These equations are solved by applying a
Fourier transformation with respect to the
variable y. This results in first order partial
differential equations, with ¢ and x as inde-
pendent variables, which are solved by the
method of characteristics. This method of
solution can be also used in case f, y, and u,, are
functions of both x and t. The equations, how-
ever, become more involved and are not con-
sidered in the present paper. The case of a
variation in wall temperature will be treated
first.

Solution for the heat flux when the walil tempera-
ture is prescribed

The problem in this case is described by

equations (11)~(14). The solution is obtained by

first applying a Fourier sine transform to
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equation (11) with respect to the variable .
The Fourier sine transform of a function
T(¢, x, ) is defined as [6].

0(t, %, ) = J(2/) I T, x, ) sin (o) dy.

(16)
Using equation (16) and the boundary condi-
tions (13) and (14), equation (11) transforms into
the first order partial differential equation

a9 08

Fn + u,(x) P ud(x) [/(2/n) ofix) — 0?0].
(17

Equation (17) can be solved by the method of
characteristics subject to the side conditions in
equation (12), which when transformed read,

80, x, w) = 0,6(t,0, ) = 0. (18)

As described in [7], the general solution of
equation (17)is of the form

Y, = xY,)

where Y {t,x,0) = C; and Y,(t,x,8) = C, are
solutions of any two independent differential
equations that imply the relationship

4o 9% _ do ]
T ux) ui(x) [J21) wfix) — w¥0]
(20)

In general, the solutions Y, and Y, represent
two families of integral surfaces, Y,(t, x,6) = C,
and Y,(t,x,0) = C, in the coordinate system
t,x, 6. The intersection of a surface of one
family with a.surface of the second family
defines a characteristic curve. ¥; and Y, are
determined by integrating the following two
equations:

(19)

_ dx
T ulx)

de
[J/2m) wfix) — 6]

dt (21)

ux)dx = (22
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The solution to equation (21) is

Yi(t,x,0) =t — X(x) = C, (23)

where

mn=jiﬂx>0 (24)

u p( 7’[)
0

The potential velocity distribution should be of
such character that the integral in equation (24)
exists. After integrating both sides of equation
(22), and rearranging the terms, the following is
obtained:

Jem T exp o)

— fexp. [w?P(x)]

- ——Wi/”’ff (nexplw’¢n]dn = C.  (29)

0

Y., x,0) =

where

$(x) = (I) u(n)dn, x > 0 (26)
In this case, the integral surface ¥, = C, is a
family of planes that are parallel to the x—t
plane. The equation Y, = C, defines a family of
surfaces since 6 is a function of x and t. Any
plane of the first family intersects a surface of
the second family in a characteristic curve that
lies in a plane parallel to the x—t plane where
our interest is confined to the first quadrant
x >0, t > 0. These characteristic curves are
readily defined by equation (23) and are shown
in Fig. 2. The equation of the dividing charac-
teristic, which passes through the origin in the
x—t plane, is defined as

t = X(x)or x = F(t) (27)

on the condition that equation (23) can be
inverted and there is a 1-1 correspondence
between the variables ¢t and x. Except for an
arbitrary constant, the equation of the other
characteristic curves shown in Fig. 2 is the same

1225

as equation (27) and it may be written either as
in equation (23) or as

x — F(t) = C,.

(28)

° x

F1G. 2. Characteristic curves in the x~ plane (x > 0, ¢t > 0).

Hence, in view of equations (19), (25) and (28)
the general solution of the partial differential
equation (17) is

Ax)
Jem ==~

o(t, x, w) =

J@/m)
«w

% exp [—?¢(x)] ];f'(n) exp [w2¢()] dr

— f[x = F(t)]exp. [—?P(x)].  (29)
The arbitrary function y is determined such that
the initial conditions for # as stipulated in
equation (18) are satisfied. This results in two
different expressions for y and hence for 6
depending on whether t < X(x) or t > X(x)

o, x, ) = ¥ L sy V@) 21 b — Fe]

x exp[ — w?*{p(x) — ¢(x ~ F(}]

_J@m (2/ )

X

Jf () exp[ —*{¢(x)
x—F()

— ¢m}ldn,t < X(x)  (30)
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wz/n J(z/n)

ot x, w) = fx) — A0)

x exp[ —w?@(x)] — \/(2/75) J.f )

2 X(x).
(31)

Note that the wall temperature f{x) can have a
finite step f{0) at x = 0. In equation (30), x —
F(t) > 0 (see Fig. 2) until t = X(x), that is,
x = F(t) when f[x — F(t)] = f(0). Furthermore
the function ¢(x) is defined in equation (26) for
x 2 0 and hence ¢[x — F(t)] in equation (30) is
well defined for x — F(t) > 0. Equation (30)
satisfies the condition 8(0, x, w) = 0 and corres-
ponds to the transient part of the solution.
Similarly, equation (31) satisfies the condition
8(t,0,0) =0 and represents the steady-state
part of the solution.

The next step is to invert equations (30) and
(31) back to the (z, x, ) domain. This is done by
using the relationships [6]

x exp[ —w{¢(x) — P(n)}]dn. t

JS‘“ @) 4 — S¥>0 (32)
[
_exp(—w’a)
j sin (wyr) dw
[43]
[¢]
=erf(y/2/a),a =0,y >0  (33)

where a is a parameter, and the assumption is
made that the integrations in equation (33) can
be interchanged with the integrals appearing in
equations (30) and (31). Using the above re-
lationships and equation (10), the final result of
the fluid temperature distribution in the dimen-
sionless (¢, x, y) domain is obtained as

T(t,x,y) = fix) —f[x — F(t
x erf [\/(Pe) u{x) y/2 {${x) — ¢[x — F(1)]}!]

= J et (e, y2 (609

— ¢ dnt < X(x)  (34)
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T(, x, y) = fix) — fl0)
x erf {{/(Pe) u,(x) y/2 [¢(x)]¥}

- };f'm} erf {/(Pe) u,(x) y/2 [$(x)

— ¢t dnt = X(x). (39
These expressions can be verified and shown to
satisfy the partial differential equation and the
associated side conditions.

Our primary interest centers on the dimen-
sionless temperature gradient at the wall. This
is obtained by differentiating equations (34)
and (35) with respect to y and then letting y tend
to zero.

wﬁl (t.%.0) = VP u(x) ffx — F(1)] i
ay T @) — ¢lx — Fot
L PO u(x) J _ fndn
J RCERE Ikl
< X(x) {36)
a ﬁT(t ©0) = V(P ux)l0) |/(Pe)u,x)
dy J@ [o(x)13 NE.
[ fndy
e a2 X 37
Xj:[f!)(x) d(m1* 't ). 67

It is important here to note that in case f{x) has
a step jump at x = 0 and remains constant
thereafter the integrals in equations (36) and
(37) vanish. The integrals in equations. (36) and
(37) exist as n tends to x provided fly) and ¢(y)
are such that

A -
————— 1< 1
60 - ol*
in the neighborhood of the singular point of the

integrand.

Equations (36) and (37) reveal that for time
t < X{(x), the temperature gradient at the wall
is a function of both time and location along
the wall and for t > X{(x), the temperature
gradient at the wall reaches steady-state condi-
tions and hence is independent of time.
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Solution for the wall temperature when the heat
Aux is prescribed

The problem in this case is described in
equations (11), (12), (13} and (15). The analysis
follows closely that presented in the previous
section. The only major difference is the use of
the Fourier cosine transform, which is defined
as [6]

%&Q:Jwﬂ?%me%@mw
(38)

instead of the Fourier sine transform, which was
previously employed. The rest of the details are
omitted and the final results for the dimension-
less temperature distribution are

Tixp= [ Nesyindnt<Xe) (9)

x -~ F{t)
T{t, %, y) = i N(x,y;mdnt > X(x) (40)
where

o ()
NCyin) = 5 To) — dl
[ Pa(ny’ }
“""{ o — ey

By substituting y = 0, the wall temperature can
be easily obtained from equations (39) and (40).
The integrals in the above equations converge
as # tends to x provided y{n) and ¢{n} are such
that

W)
[o(x) — (]2

in the neighborhood of the singular point of the
integrand.

=0 n<1

APPLICATIONS

To demonstrate the applications of the
present analysis, the problem of wedge flows
will be considered. In this case, the dimension-
less potential velocity is [5]

U =x"0<m<L,x>0 (42
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where x is a dimensionless distance measured
along the surface of the wedge from its vertex.
The functions X(x) and F(z), defined in equa-
tions (24) and (27} are

X(x) = x*"™(1 — m), x = 0 and F(t)

= [l —m]" ™ >0  (43)

while
Hx) = X" m+ 1), x >0,

Note that the case of m = 1 (stagnation-point
flow) has been excluded since the integral in
equation (24) diverges at the lower limit. For
simplicity, the prescribed wall temperature or
heat flux are assumed to be uniform spatially,
hence

X)) =yx)=1x=>=0.
Step jump in wall temperature
The ratio of the time-dependent heat flux at

the wall to its steady-state value (¢, ,,/q; .5 I8
obtained from equations (36), (37) and (42){44).

q},wf‘;‘l.w.ss = 1:{(1 - am*-i)%’? < i!{{i - m}

(45)
ql.w/ql,w,xs =Lt> 1/(1 - m) (46)

where
o= {1 - [l —m]¥am) @)

In this case, T =tuyx)/x =tx""' and the
steady-state wall heat flux is given by equation
(48)

m 1
KL Pem DY (5) 7 (g
A1, w,ss = L T . L l

To compute g4, L should be taken as a
typical {ength in the x-direction; the reference
velocity U, appearing in Pe, should be con-
sidered as the velocity at x; = L.
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The case of a flow over a flat plate corres-
ponds to m = 0 and equations (45) and (46)
reduce to

ql,w/ql,w,ss = 1/\/":’1 S 1 (49)
ql,w/ql,w,ss = I,T > 1 (50)
These results are shown in Fig. 3 for different
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When « =1, the integral in equation (51)
defines the complete Beta function, which is
related to the Gamma function by the following
relationship [8]

1 1 1 m+3
B(m’i) ‘/(”)F< n 1)/r(2m n 2)

values of m. (52)
7-0 \ 300
60 \\ \ 25-0
5. 20-0
i oa0 \ A K 50 4
2 \ \ Y
h, e
3 NN 3
B I > 00 >
& k\ \ \ 5
b4
2
20 S 50
\\ P //8 \\
1-0 =0
0 10 2-0 30 3.0
R tug (%) Y

X

FiG. 3. Transient wall heat flux response to a step jump in wall temperature for wedge flows,
equations (45) and (46).

Step jump in wall heat flux

The ratio of the time-dependent wall tempera-
ture to its steady-state value is calculated from
equations (39)+41) (y = 0), (9), (42){(44). The
integrals appearing in equations (39) and (40)
can be written, in this case, in terms of the
incomplete Beta function B, (1/[m + 1], %)
which is defined as [8]

TREAYE Lt NN
B“(:?IT’E)“JC (1-9*dl. (51

0

The incomplete Beta function is tabulated in [8].
Using the above relationships, the ratio of the
wall temperature to its steady-state value can
be written in the following form

o)
()

Tl,q,w/Tl,q,w,ss = 1

1 —m
(53)
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1
1 —

Tl,q,w/Tl,q,w,ss = I,T ? (54)

The steady-state wall temperature in this case is

qoL
K[(m + 1) Pe]?

Sl

2m + 2

Tl,q,w,ss =

1-m

(35)

T}, 4, w,ss is computed in the same way as q; ,, ;o
given in equation (48). When m = 0 (flat plate)

Tgw/Tgws =J@1<1 (56
Tgw/Tigws=1L121 (57)

The above results are shown in Fig. 4 for
different values of m. Since the arguments of B,
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prescribed constant are shown in Figs. 3 and 4.
The values m = 0, 4, 4, and 3 correspond to the
wedge angles 0, 2r/5, 2xn/3, and 6n/7, respec-
tively [ 5, p. 143].

These solutions are composed of a transient
part that reaches the steady state in an abrupt
manner. This abrupt behavior is a result of the
assumption that ¢ = 0 and that the potential
velocity prevails throughout the thermal layer.

The present analysis, though developed for
the theoretical case of ¢ = 0 (which implies the
absence of a hydrodynamic boundary layer),
may still give good results for laminar boundary
layers when o is slightly different from zero.
{Note that in this case the Péclet number should
be written as Pe = Re. o). This is suggested by
the results of [1] and [4]. The steady-state part
of the present solution for a prescribed wall
temperature, that is, equation (37), is identical

0

075
/ /
/,0

S /
T Y / yd
NV &/
3 ,’\V /
s « /
[
025 v ]
el
.——M/
0 ) 20 35 7.0
w’u‘(X) e g

Fi1G. 4. Transient wall temperature response to a step jump in wall heat flux for wedge flows,
equations (53) and (54).

for m = 4, 4, and 3 are not tabulated in [8], B,
in equation (52) was evaluated on an IBM 360
computer.

DISCUSSION

The solutions for both the heat flux when the
wall temperature is prescribed constant, and
the wall temperature when the heat flux is

to the first term in the series expansion of the
wall heat flux in [1]. This term was shown [1]
to predict the heat transfer from the wall quite
well up to o = 0-03. During the transient phase,
the small time solution by Riley [4], for the flat
plate case revealed that the heat transfer process
is dominated primarily by the one-dimensional
molecular diffusion transverse to the flow field.
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This is also the case in the present solution,
equations (49) and (56). The large time solution
[4] consisted of a steady-state part and a
transient contribution in the form of a series
whose leading term was determined. This term
shows that the steady state is reached exponenti-
ally and not abruptly at t = 1 as indicated in
equations (50) and (57). However, for small
Prandtl numbers and for values of t = 1, this
term becomes small when compared to the
steady-state part of the solution and therefore
the abrupt behavior shown in the present
analysis should be a good approximation.

This indicates, at least for the special case of a
flat plate, that during transient and steady-state
phases, the present analysis should predict the
heat transfer or surface temperature quite well
if the Prandtl number is sufficiently small. The
present analysis is of particular value in case of

and PAUL L. CHAMBRE

geometries other than a flat plate where no
analytical solutions are available in the litera-
ture.
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Résumé—Des solutions analytiques sont présentées pour le transport de chaleur transitoire dans un

écoulement avec convection forcée sur une paroi courbe lorsque le nombre de Prandtl est nul. La paroi

est soumise soit 4 une variation de température soit & une variation de flux de chaleur. Comme application,

on a calculé les solutions pour le cas des écoulements sur des diédres. L’analyse actuelle serait également

applicable a un écoulement laminaire de couche limite avec une vitesse variable de 1’écoulement libre
lorsque le nombre de Prandtl est légérement différent de zéro.

Zusammenfassung—Fiir den Wirmeiibergang in einer Zwangskonvektionstromung an einer gekriimmten

Wand werden analytische Losungen agegeben, fiir eine Prandti-Zahl gieich Null. Fiir die Wand ist dabei

eine Variation der Temperatur oder de Wirmestromdichte vorgegeben. Als Anwendungsbeispiele wurden

die Lésungen fiir Keilstromungen berechnet. Die vorliegende Methode diirfte auch auf laminare Grenz-

schichtstromungen mit variabler Freistromgeschwindigkeit anwendbar sein, wenn die Prandtl-Zahl nur
wenig grosser als Null ist.

AHHOTRI{HH—HPEI[(‘T&BJIGHLI AHAJHTHYECKHUE

pelueHisd HeCTALHOHAPHOT'O IEepeHOCa Terd

NpY BHHYMAeHHOH KOHBeKIMH HA HICKPHUBIEHHOI cTeHKe, Korja kpurepuit [Ipaugrna pasen

Hyso. VaMeHsAsach WM TeMIepaTypa CTeHKM WJIM TeIIOBOl noTok. B kadvecrse mpuMepa

AaH pacuér pemleHuit Jya cayvasa obTexanuA kiansa. Jlanubif anaau3s MokeT OBITh PUMEHEH

K TeYeHHIO JJAMWHAPHOI'0 MOTPAHNYHOrO CIOA € HEePEeMEHHOI CKOPOCTHIO CBOOOIHOIO MOTOKA,
KOrja 3HaYeHMsa kpurepus IIpaHATIA HECKONBKO OTIMYHEL OT HYJISA.



